correlated with a hydrogen bond between these atoms. The existence of a hydrogen bond is also indicated by the position and broadness of $v(\mathrm{OH})$.
The bond distance between Sb and $\mathrm{O}(1)$ of the unidentately bonded carboxylate group is 2.280 (3) \AA indicating an appreciably high ionic character. A similar situation was found in $\left(\mathrm{SbPh}_{4}\right) \mathrm{CHO}_{2}$, the analogous $\mathrm{Sb}-\mathrm{O}$ distance being $2.223 \AA$ (Bone $\&$ Sowerby, 1979). The $\mathrm{Sb}-\mathrm{O}(\mathrm{H})$ bond of 1.975 (3) \AA is significantly shorter than the $\mathrm{Sb}-\mathrm{O}$ bonds in $\mathrm{Sb}(\mathrm{OH}) \mathrm{Ph}_{4}$ ($2.048 \AA$; Beauchamp, Bennett \& Cotton, 1969) or in $\mathrm{Sb}(\mathrm{OMe}) \mathrm{Ph}_{4}$ [2.061 (7) \AA] and $\mathrm{Sb}\left(\mathrm{OCH}_{3}\right)_{2} \mathrm{Ph}_{3}$ [mean value: 2.033 (8) \AA; Kei-wei Shen, McEwen, La Placa, Hamilton \& Wolf, 1968] which are considered to be essentially covalent.

Financial support by the Fonds der Chemischen Industrie is gratefully acknowledged.

References

Beauchamp, A. L., Bennett, M. J. \& Cotton, F. A. (1969). J. Am. Chem. Soc. 91, 297-301.
Bone, S. P. \& Sowerby, D. B. (1979). J. Chem. Res. (M), pp. 1029-1068.
Ferguson, G., Harris, G. S. \& Khan, A. (1987). Acta Cryst. C43, 2078-2081.
Frenz, B. A. (1981). Enraf-Nonius Structure Determination Package, 4th ed., version 18. Enraf-Nonius, Delft, The Netherlands.
International Tables for X-ray Crystallography (1974). Vol. IV, Tables 2.2B and 2.3.1. Birmingham: Kynoch Press. (Present distributor Kluwer Academic Publishers, Dordrecht.)
Kei-wei Shen, Mcewen, W. E., la Placa, S. J., Hamilton, W. C. \& Wolf, A. P. (1968). J. Am. Chem. Soc. 90, 1718-1723.

Main, P., Fiske, S. J., Hull, S. E., Lessinger, L., Germain, G., Declerce, J.-P. \& Woolfson, M. M. (1980). MULTAN80. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Univs. of York, England, and Louvain, Belgium.
Westhoff, T., Huber, F. \& Preut, H. (1988). J. Organomet. Chem. 348, 185-191.

Structures of Bis[aquadimethyl(2,6-pyridinedicarboxylato)tin(IV) hydrate] and Bis[aquadi-n-butyl(2,6-pyridinedicarboxylato)tin(IV)]

By Friedo Huber, Hans Preut and Eckehard Hoffmann
Fachbereich Chemie, Universität Dortmund, Postfach 500 500, D-4600 Dortmund 50, Federal Republic of Germany

and Marcel Gielen
Free University of Brussels VUB, Faculty of Engineering AOSC Unit, Pleinlaan 2, B-1050 Brussels, Belgium

(Received 17 March 1988; accepted 17 October 1988)

Abstract

I) $\left\{\left[\mathrm{Sn}\left(\mathrm{CH}_{3}\right)_{2}\left(\mathrm{C}_{7} \mathrm{H}_{3} \mathrm{NO}_{4}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)\right] . \mathrm{H}_{2} \mathrm{O}\right\}_{2}, M_{r}$ $=699.79$, monoclinic, $P 2^{\prime} / c, a=11.576$ (6), $b=$ 13.266 (7), $\quad c=7.747$ (5) $\AA, \quad \beta=92.67(5)^{\circ}, \quad V=$ 1188 (1) $\AA^{3}, Z=2, D_{x}=1.956 \mathrm{Mg} \mathrm{m}^{-3}, \lambda(\mathrm{Ag} K \alpha)=$ $0.56087 \AA, \quad \mu=1.1 \mathrm{~mm}^{-1}, \quad F(000)=688, \quad T=$ 291 (1) K, final $R=0.040$ for 2118 unique observed diffractometer data $[F \geq 2 \cdot 0 \sigma(F)]$. (II) [$\mathrm{Sn}(n-$ $\left.\left.\mathrm{C}_{4} \mathrm{H}_{9}\right)_{2}\left(\mathrm{C}_{7} \mathrm{H}_{3} \mathrm{NO}_{4}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)\right]_{2}, \quad M_{r}=832.08$, tetragonal, $P 4_{2} / n, \quad a=17.684$ (12),$\quad c=11.148$ (12) $\AA, \quad V=$ 3486 (5) $\AA^{3}, Z=4, D_{x}=1.585 \mathrm{Mg} \mathrm{m}^{-3}, \lambda(\mathrm{Ag} K \alpha)=$ $0.56087 \AA, \quad \mu=0.78 \mathrm{~mm}^{-1}, \quad F(000)=1680, \quad T=$ 291 (1) K, final $R=0.055$ for 2410 unique observed diffractometer data $[F \geq 2.0 \sigma(F)$]. In both compounds Sn has a distorted pentagonal bipyramidal environment, the alkyl groups being in the apical positions. Both carboxylate groups of the tridentate ligand are unidentate. Two molecular units are liriked via two asymmetric $\mathrm{Sn}-\mathrm{O}$ (carboxylate)- Sn bridges to form a

planar $\mathrm{Sn}-\mathrm{O}-\mathrm{Sn}-\mathrm{O}$ ring. Four O atoms ($2 \times$ bridging, $1 \times$ water, $1 \times$ carboxylate) and one N atom form the equatorial plane. Linking of the dimeric units by hydrogen bonds is effected by the water of hydration in the $\mathrm{Me}_{2} \mathrm{Sn}$ complex, and by the coordinated water molecule in the $\mathrm{Bu}_{2} \mathrm{Sn}$ complex.

Introduction. $\quad \mathrm{Ph}_{2} \mathrm{Sn}\left(\mathrm{H}_{2} \mathrm{O}\right) L \quad\left(\mathrm{H}_{2} L=2,6\right.$-pyridinedicarboxylic acid) has a polymeric chain structure in the crystalline state, the chains being formed by bidentate carboxylate groups and intrachain hydrogen bridges and being linked by interchain hydrogen bridges. Aside from this particular structural feature this compound earns attention since it adds one more example to the few organotin compounds with heptacoordinated Sn and since it proved to possess high in vitro activity against various leukemic and tumor cells (Gielen et al., 1987). We now report on the structures of two (C) 1989 International Union of Crystallography
alkyl ${ }_{2} \mathrm{Sn}\left(\mathrm{H}_{2} \mathrm{O}\right)_{n} L$ compounds. They also show high in vitro antitumor activity (Gielen et al., 1987) and contain heptacoordinated Sn but they have a distinctly different structure.

Experimental. (I) and (II) were synthesized from 2,6-pyridinedicarboxylic acid and the appropriate dialkyltin oxide (Gielen et al., 1987). Single crystals from undried methanol. Approximate dimensions (I) $0.58 \times 0.67 \times 0.13 \mathrm{~mm}$, (II) $0.3 \times 0.4 \times 0.3 \mathrm{~mm}$; Nonius CAD-4 diffractometer, graphite-monochromated $\mathrm{Ag} K \alpha$ radiation, $\omega / 2 \theta$-scan technique, scan speed (I) $2.9-6.7^{\circ} \mathrm{min}^{-1}$ and (II) $1.7-3.7^{\circ} \mathrm{min}^{-1}$ in θ, cell parameters from least-squares fit with 25 reflections up to (I) $2 \theta=26.7^{\circ}$ and (II) $2 \theta=28.0^{\circ}$ equally distributed in reciprocal space; six standard reflexions recorded every 2.5 h , only random deviations, 4958 (I) and 7390 (II) reflexions measured in the ranges (I) $1^{\circ} \leq \theta \leq 20^{\circ},-9 \leq h \leq 9,0 \leq k \leq 16,-14 \leq l \leq 14$ and (II) $1^{\circ} \leq \theta \leq 20^{\circ},-21 \leq h \leq 21, \quad 0 \leq k \leq 21$, $0 \leq l \leq 13$; after averaging: (I) 2247 ($R_{\text {int }}=0.053$) and (II) 3502 ($R_{\text {int }}=0.017$) unique reflexions, (I) 2118 and (II) 2410 with $F \geq 2.0 \sigma(F)$; Lorentz-polarization correction and absorption correction via ψ scans; max./min. transmission (I) $1 \cdot 00 / 0 \cdot 66$, (II) $1.00 / 0.96$; systematic absences (I) ($h 0 l$) $l=2 n+1$, ($0 k 0$) k $=2 n+1$ conform to space group $P 2_{1} / c$, and (II) ($h k 0$) $h+k=2 n+1$, ($00 l$) $l=2 n+1$ conform to space group $P 4_{2} / n$; structure solution via (I) Patterson function and (II) direct methods, ΔF syntheses and full-matrix least-squares refinement with anisotropic temperature factors for all non-H atoms and a common isotropic temperature factor for H atoms, which were placed in geometrically calculated positions ($\mathrm{C}-\mathrm{H}$ $0.96 \AA$); H atoms at $\mathrm{O}(6)$ were placed on the line connecting the atoms $O(6)$ and $O(4)$ and on the line connecting the atoms $\mathrm{O}(6)$ and $\mathrm{O}(5)(1-x,-0.5+y$, $0.5-z$) at a distance of $0.96 \AA$ from $\mathrm{O}(6)$; refinement on F with (I) 2118 and (II) 2410 reflections and (I) 155 and (II) 200 refined parameters; (I) $w=1.0 /\left[\sigma^{2}(F)+\right.$ $\left.0.001 F^{2}\right] ; S=1.76, R=0.040, w R=0.046,(\Delta / \sigma)_{\text {max }}$ $=0.03 ; 12$ reflexions which show extinction effects were omitted; (II) $w=1.0 /\left[\sigma^{2}\left(F_{o}\right)+0.001 F_{o}{ }^{2}\right] ; S=$ $1.30, R=0.055, w R=0.053,(\Delta / \sigma)_{\max }=0.03$; five reflexions which show extinction effects were omitted; largest peak in final ΔF map (I) 0.9 e \AA^{-3} near ($0.83 \AA$) $\mathrm{Sn}(1)$, next peak has $0.7 \mathrm{e} \AA^{-3}$ and (II) $\pm 0.4 \mathrm{e} \AA^{-3}$; complex neutral-atom scattering factors from International Tables for X-ray Crystallography (1974); programs:Enraf-Nonius Structure DeterminationPackage (Frenz, 1985) for data reduction, SHELXTL-Plus (Sheldrick, 1987), MULTAN80 (Main et al., 1980), PARST (Nardelli, 1982).

Discussion. The structures of the two title compounds and the numbering schemes are shown in Figs. 1 and 2. Positional parameters and equivalent values U_{eq} of the
anisotropic temperature factors for the non- H atoms are given in Table 1 and bond lengths and angles in Table 2.*

In both compounds (I) and (II) the molecules reside on a center of symmetry and two $R_{2} \mathrm{Sn} L\left(\mathrm{H}_{2} \mathrm{O}\right)$ units are linked via two asymmetric $\mathrm{Sn}-\mathrm{O}-\mathrm{Sn}$ bridges, such that a planar $\mathrm{Sn}-\mathrm{O}-\mathrm{Sn}-\mathrm{O}$ ring is formed. Sn has a distorted pentagonal bipyramidal environment, the two C atoms of the R group being in the apical positions, $\mathrm{N}(1)$, the two bridging atoms $\mathrm{O}(1)$ and $\mathrm{O}\left(1^{1}\right)$, the atoms $O(3)$ and $O(5)$, the latter of the coordinated water molecule, forming the equatorial plane. Least-squares planes through the atoms $\mathrm{Sn}(1), \mathrm{O}(1), \mathrm{O}\left(1^{\prime}\right), \mathrm{N}(1)$, $\mathrm{O}(3), \mathrm{O}(5)$, (I) $\psi^{2}=90 \cdot 5$, (II) $\psi^{2}=112 \cdot 1$, show that in (I) the maximum deviation from this plane is 0.026 (4) $\AA[\mathrm{O}(3)]$ and in (II) 0.039 (5) $\AA[\mathrm{N}(1)]$. The maximum deviations of the remaining atoms in the $\left(\mathrm{O}_{2} \mathrm{C}_{2} \mathrm{C}_{5} \mathrm{H}_{3} \mathrm{~N}\right.$ groups from these planes are (I) 0.187 (4) $\AA[O(2)]$ and (II) 0.524 (5) $\AA[\mathrm{O}(4)]$.

Both carboxylate groups of L in (I) and (II) are unidentate. In (I) the $\mathrm{C}=\mathrm{O}$ group of that carboxylate group which is not participating in the formation of the

[^0]Fig. 1. General view (SHELXTL-Plus graphic) of $\left\{\left(\mathrm{CH}_{3}\right)_{2} \mathrm{Sn}\left[\left(\mathrm{O}_{2} \mathrm{C}\right)_{2} \mathrm{C}_{5} \mathrm{H}_{3} \mathrm{~N}\right]\left(\mathrm{H}_{2} \mathrm{O}\right) \cdot \mathrm{H}_{2} \mathrm{O}\right\}_{2}$ (I) showing the atomnumbering scheme [(i) corresponds to the symmetry operation: $-x,-y,-z]$.

Fig. 2. General view (SHELXTL-Plus graphic) of $\left\{\left(n-\mathrm{C}_{4} \mathrm{H}_{9}\right)_{2}-\right.$ $\left.\operatorname{Sn}\left[\left(\mathrm{O}_{2} \mathrm{C}\right)_{2} \mathrm{C}_{5} \mathrm{H}_{3} \mathrm{~N}\right]\left(\mathrm{H}_{2} \mathrm{O}\right)\right\}_{2}$ (II), showing the atom-numbering scheme $[(\mathrm{i})$ corresponds to the symmetry operation: $-x,-y,-z]$.

Table 1. Atomic coordinates and equivalent isotropic thermal parameters $\left(\AA^{2} \times 10^{3}\right)$

$$
U_{\mathrm{eq}}=\frac{1}{3}\left(U_{11}+U_{22}+U_{33}\right) .
$$

$\left\{\left(\mathrm{CH}_{3}\right)_{2} \mathrm{Sn}\left[\left(\mathrm{O}_{2} \mathrm{C}\right)_{2} \mathrm{C}_{5} \mathrm{H}_{3} \mathrm{~N}\right]\left(\mathrm{H}_{2} \mathrm{O}\right) \cdot \mathrm{H}_{2} \mathrm{O}\right\}_{2}(\mathrm{I})$

	\boldsymbol{x}	\boldsymbol{y}	\boldsymbol{z}	$U_{\text {eq }}$
	$0.17076(2)$	$0.03331(2)$	$0.09174(3)$	25
$\mathrm{Sn}(1)$	$0.0328(3)$	$-0.1010(2)$	$0.0020(4)$	29
$\mathrm{O}(1)$	$0.0145(3)$	$-0.2648(2)$	$-0.0591(5)$	45
$\mathrm{O}(2)$	$0.3518(3)$	$0.0457(2)$	$0.1915(5)$	36
$\mathrm{O}(3)$	$0.5155(4)$	$-0.0312(2)$	$0.2768(8)$	60
$\mathrm{O}(4)$	$0.1998(3)$	$0.2042(2)$	$0.1339(5)$	37
$\mathrm{O}(5)$	$0.6416(4)$	$-0.1737(4)$	$0.4993(6)$	70
$\mathrm{O}(6)$	$0.2509(3)$	$-0.1253(3)$	$0.1100(4)$	25
$\mathrm{~N}(1)$	$0.0689(4)$	$-0.1915(3)$	$-0.0034(5)$	29
$\mathrm{C}(1)$	$0.4160(4)$	$-0.0319(3)$	$0.2182(7)$	36
$\mathrm{C}(2)$	$0.1918(3)$	$-0.2079(3)$	$0.0631(5)$	24
$\mathrm{C}(3)$	$0.2426(4)$	$-0.3027(3)$	$0.0797(6)$	37
$\mathrm{C}(4)$	$0.3556(4)$	$-0.3107(4)$	$0.1405(7)$	40
$\mathrm{C}(5)$	$0.4161(4)$	$-0.2241(4)$	$0.1834(7)$	38
$\mathrm{C}(6)$	$0.3607(4)$	$-0.1317(3)$	$0.1688(5)$	28
$\mathrm{C}(7)$	$0.1003(5)$	$0.0302(3)$	$0.3362(6)$	35
$\mathrm{C}(8)$	$0.2024(4)$	$0.0513(4)$	$-0.1693(6)$	38
$\mathrm{C}(9)$				

$\left\{\left(n-\mathrm{C}_{4} \mathrm{H}_{9}\right)_{2} \mathrm{Sn}\left[\left(\mathrm{O}_{2} \mathrm{C}\right)_{2} \mathrm{C}_{5} \mathrm{H}_{3} \mathrm{~N}\right]\left(\mathrm{H}_{2} \mathrm{O}\right)\right\}_{2}$ (II)

	x	y	z	$U_{\text {eq }}$
$\mathrm{Sn}(1)$	$0.07127(2)$	$-0.10102(2)$	$0.01872(4)$	51
$\mathrm{O}(1)$	$0.0090(2)$	$0.0008(2)$	$0.1255(3)$	56
$\mathrm{O}(2)$	$-0.0153(3)$	$0.0500(3)$	$0.3067(4)$	80
$\mathrm{O}(3)$	$0.1416(3)$	$-0.1995(3)$	$0.0541(4)$	64
$\mathrm{O}(4)$	$0.1748(3)$	$-0.2866(3)$	$0.1897(4)$	67
$\mathrm{O}(5)$	$0.0886(3)$	$-0.1508(3)$	$-0.1749(4)$	71
$\mathrm{~N}(1)$	$0.0891(3)$	$-0.1098(3)$	$0.2195(4)$	51
$\mathrm{C}(1)$	$0.0141(4)$	$0.0026(4)$	$0.2395(5)$	57
$\mathrm{C}(2)$	$0.1519(4)$	$-0.2240(4)$	$0.1626(5)$	54
$\mathrm{C}(3)$	$0.0616(3)$	$-0.0571(4)$	$0.2945(5)$	54
$\mathrm{C}(4)$	$0.0776(4)$	$-0.0621(5)$	$0.4157(6)$	65
$\mathrm{C}(5)$	$0.1206(4)$	$-0.1220(4)$	$0.4570(6)$	66
$\mathrm{C}(6)$	$0.1484(4)$	$-0.1760(4)$	$0.3783(5)$	61
$\mathrm{C}(7)$	$0.1296(4)$	$-0.1684(4)$	$0.2578(5)$	51
$\mathrm{C}(8)$	$0.1599(4)$	$-0.0251(4)$	$-0.0177(6)$	64
$\mathrm{C}(9)$	$-0.0342(4)$	$-0.1572(5)$	$0.0135(6)$	72
$\mathrm{C}(10)$	$-0.0397(6)$	$-0.2255(7)$	$0.084(1)$	165
$\mathrm{C}(11)$	$-0.1095(7)$	$-0.2683(7)$	$0.087(1)$	151
$\mathrm{C}(12)$	$-0.1073(8)$	$-0.3358(9)$	$0.158(1)$	228
$\mathrm{C}(13)$	$0.1995(4)$	$0.0103(5)$	$0.0898(6)$	82
$\mathrm{C}(14)$	$0.2592(5)$	$0.0645(6)$	$0.0579(8)$	103
$\mathrm{C}(15)$	$0.2890(6)$	$0.1079(7)$	$0.161(1)$	138

Table 2. Bond distances (\AA) and angles $\left({ }^{\circ}\right)$

	(I)	(II)		(I)	(II)
$\mathrm{Sn}(1)-\mathrm{O}(1)$	2.471 (3)	2.422 (4)	$\mathrm{O}(1)-\mathrm{Sn}(1)-\mathrm{C}(8)$	88.1 (2)	87.6 (2)
$\mathrm{Sn}(1)-\mathrm{O}\left(1^{1}\right)$	2.593 (3)	2.783 (4)	$\mathrm{O}(1)-\mathrm{Sn}(1)-\mathrm{N}(1)$	67.1 (1)	68.2 (2)
$\mathrm{Sn}(1)-\mathrm{O}(3)$	2.206 (4)	2.176 (5)	$\mathrm{O}(1)-\mathrm{Sn}(1)-\mathrm{O}(5)$	146.6 (1)	142.1 (2)
$\mathrm{Sn}(1)-\mathrm{O}(5)$	2.312 (3)	2.352 (5)	$\mathrm{O}(1)-\mathrm{Sn}(1)-\mathrm{O}(3)$	138.0 (1)	139.9 (2)
$\mathrm{Sn}(1)-\mathrm{N}(1)$	2.301 (4)	2.265 (5)	$\mathrm{C}(8)-\mathrm{Sn}(1)-\mathrm{C}(9)$	166.2 (2)	162.2 (3)
$\mathrm{Sn}(1)-\mathrm{C}(8)$	2.097 (5)	2.104 (7)	$\mathrm{O}(1)-\mathrm{Sn}(1)-\mathrm{O}\left(1^{\prime}\right)$	65.1 (1)	65.1 (1)
$\mathrm{Sn}(1)-\mathrm{C}(9)$	2.086 (5)	$2 \cdot 114$ (8)	$\mathrm{N}(1)-\mathrm{Sn}(1)-\mathrm{O}\left(1^{\prime}\right)$	$133 \cdot 3$ (2)	133.3 (2)
$\mathrm{O}(1)-\mathrm{C}(1)$	1.272 (5)	1.275 (7)	$\mathrm{O}(3)-\mathrm{Sn}(1)-\mathrm{O}\left(1^{\prime}\right)$	155.0(1)	155.0 (1)
$\mathrm{O}(2)-\mathrm{C}(1)$	1.226 (5)	1.238 (8)	$\mathrm{O}(5)-\mathrm{Sn}(1)-\mathrm{O}\left(1^{1}\right)$	77.0 (1)	77.0 (1)
$\mathrm{O}(3)-\mathrm{C}(2)$	$1 \cdot 280$ (5)	1.298 (8)	$\mathrm{C}(8)-\mathrm{Sn}(1)-\mathrm{O}\left(1^{\prime}\right)$	82.1 (2)	82.1 (2)
$\mathrm{O}(4)-\mathrm{C}(2)$	1.218 (7)	1.215 (8)	$\mathrm{C}(9)-\mathrm{Sn}(1)-\mathrm{O}\left(1^{\prime}\right)$	80.4 (2)	80.4 (2)
$\mathrm{N}(1)-\mathrm{C}(3)$	1.334 (5)	1.344 (8)	$\mathrm{Sn}(1)-\mathrm{O}(1)-\mathrm{C}(1)$	118.8 (3)	118.5 (4)
$\mathrm{N}(1)-\mathrm{C}(7)$	1.333 (5)	1.330 (8)	$\mathrm{Sn}(1)-\mathrm{O}(3)-\mathrm{C}(2)$	122.1 (3)	121.1 (4)
$\mathrm{C}(1)-\mathrm{C}(3)$	1.507 (6)	1.482 (9)	$\mathrm{Sn}(1)-\mathrm{N}(1)-\mathrm{C}(7)$	117.0 (3)	116.5 (4)
$\mathrm{C}(2)-\mathrm{C}(7)$	1.512 (6)	1.500 (9)	$\mathrm{Sn}(1)-\mathrm{N}(1)-\mathrm{C}(3)$	122.3 (3)	121.1 (4)
$\mathrm{C}(3)-\mathrm{C}(4)$	1.390 (6)	1.383 (8)	$\mathrm{C}(3)-\mathrm{N}(1)-\mathrm{C}(7)$	120.6 (4)	122.4 (5)
$\mathrm{C}(4)-\mathrm{C}(5)$	1.374 (7)	1.38 (1)	$\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{O}(2)$	126.6 (4)	126.2 (6)
$\mathrm{C}(5)-\mathrm{C}(6)$	1.378 (7)	1.39 (1)	$\mathrm{O}(2)-\mathrm{C}(1)-\mathrm{C}(3)$	117.9 (4)	118.0 (5)
$\mathrm{C}(6)-\mathrm{C}(7)$	1.386 (6)	1.390 (8)	$\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{C}(3)$	115.5 (4)	115.8 (5)
$\mathrm{C}(8)-\mathrm{C}(13)$		1.52 (1)	$\mathrm{O}(3)-\mathrm{C}(2)-\mathrm{O}(4)$	125.8 (4)	125.6 (6)
$\mathrm{C}(9)-\mathrm{C}(10)$		1.44 (2)	$\mathrm{O}(4)-\mathrm{C}(2)-\mathrm{C}(7)$	118.9 (4)	120.6 (6)
$\mathrm{C}(10)-\mathrm{C}(11)$		1.45 (2)	$\mathrm{O}(3)-\mathrm{C}(2)-\mathrm{C}(7)$	115.3 (4)	113.8 (5)
$\mathrm{C}(11)-\mathrm{C}(12)$		1.43 (2)	$\mathrm{N}(1)-\mathrm{C}(3)-\mathrm{C}(1)$	116.0 (4)	116.2 (5)
C(13)-C(14)		1.47 (1)	$\mathrm{C}(1)-\mathrm{C}(3)-\mathrm{C}(4)$	123.4 (4)	124.5 (6)
C(14)-C(15)		1.48 (1)	$\mathrm{N}(1)-\mathrm{C}(3)-\mathrm{C}(4)$	120.6 (4)	119.3 (6)
$\mathrm{O}(4) \ldots \mathrm{O}(6)$	2.905 (7)		$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	119.6 (4)	119.2 (6)
$\left.\mathrm{O}(6) \cdots \mathrm{O} 5^{11}\right)$	2.691 (6)		$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	118.9 (5)	120.8 (6)
			$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)$	119.3 (5)	117.4 (6)
$\mathrm{N}(1)-\mathrm{Sn}(1)-\mathrm{C}(9)$	94.3 (2)	96.8 (2)	$\mathrm{C}(2)-\mathrm{C}(7)-\mathrm{C}(6)$	124.4 (4)	123.9 (6)
$\mathrm{N}(1)-\mathrm{Sn}(1)-\mathrm{C}(8)$	95.7 (2)	97.5 (2)	$\mathrm{N}(1)-\mathrm{C}(7)-\mathrm{C}(6)$	120.9 (4)	121.0 (6)
$\mathrm{O}(5)-\mathrm{Sn}(1)-\mathrm{C}(9)$	89.7 (2)	85.1 (2)	$\mathrm{N}(1)-\mathrm{C}(7)-\mathrm{C}(2)$	114.6 (4)	115.2 (5)
$\mathrm{O}(5)-\mathrm{Sn}(1)-\mathrm{C}(8)$	87.2 (2)	88.0 (2)	$\mathrm{Sn}(1)-\mathrm{C}(8)-\mathrm{C}(13)$		116.9 (5)
$\mathrm{O}(5)-\mathrm{Sn}(1)-\mathrm{N}(1)$	146.3 (1)	149.7 (2)	$\mathrm{Sn}(1)-\mathrm{C}(9)-\mathrm{C}(10)$		115.9 (6)
$\mathrm{O}(3)-\mathrm{Sn}(1)-\mathrm{C}(9)$	97.1 (2)	97.7 (3)	$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)$		121 (1)
$\mathrm{O}(3)-\mathrm{Sn}(1)-\mathrm{C}(8)$	95.1 (2)	96.9 (2)	$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(12)$		115 (1)
$\mathrm{O}(3)-\mathrm{Sn}(1)-\mathrm{N}(1)$	70.9 (1)	71.7 (2)	$\mathrm{C}(8)-\mathrm{C}(13)-\mathrm{C}(14)$		114.1 (7)
$\mathrm{O}(3)-\mathrm{Sn}(1)-\mathrm{O}(5)$	75.4 (1)	78.0 (2)	$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(15)$		113.9 (8)
$\mathrm{O}(1)-\mathrm{Sn}(1)-\mathrm{C}(9)$	87.2 (2)	87.8 (2)	$\mathrm{O}(4) \cdots \mathrm{O}(6) \cdots \mathrm{O}\left(5^{\prime \prime}\right)$	119.8 (2)	

Symmetry operations: (i) $-x,-y,-z$; (ii) $1-x,-\frac{1}{2}+y, \frac{1}{2} z$.
$\mathrm{Sn}-\mathrm{O}-\mathrm{Sn}$ bridge formation links a second water molecule via a hydrogen bond $[O(4) \cdots O(6)=$ 2.905 (6) $\AA\rfloor$. In this context it is interesting to note that
the density of (I) is appreciably higher than that of (II), which, like $\mathrm{Ph}_{2} \mathrm{Sn} L\left(\mathrm{H}_{2} \mathrm{O}\right)$ (Gielen et al., 1987), does not contain a second water molecule per $R_{2} \operatorname{Sn} L$ unit. It is
inferred that this second $\mathrm{H}_{2} \mathrm{O}$ may contract the lattice in the case of the $\mathrm{Me}_{2} \mathrm{Sn}$ compound by hydrogen bonding, while a similar contraction is prevented by the more voluminous R groups in (II) and $\mathrm{Ph}_{2} \mathrm{Sn} L\left(\mathrm{H}_{2} \mathrm{O}\right)$.
In (II) a short intermolecular distance $\mathrm{O}(4) \cdots \mathrm{O}(5)$ $\left(\bar{y},-\frac{1}{2}+x, \frac{1}{2}+z\right)$ of $2.707(7) \AA$ exists, indicating hydrogen bridging between the dimeric units.

The $\mathrm{Sn}-\mathrm{N}$ distance in (I) and in (II) is significantly shorter than in the polymeric $\mathrm{Ph}_{2} \mathrm{Sn} L\left(\mathrm{H}_{2} \mathrm{O}\right)$ [2.338 (3) \AA; Gielen et al., 1987], which has a very similar environment around Sn . In other comparable $R_{2} \mathrm{Sn}$ compounds the $\mathrm{Sn}-\mathrm{N}$ distance has also been found to be slightly larger (see Gielen et al., 1987). The distance $\mathrm{Sn}-\mathrm{O}(5)$ is distinctly longer than in $\mathrm{Ph}_{2}-$ $\mathrm{Sn}\left(\mathrm{H}_{2} \mathrm{O}\right) \mathrm{L}$ [2.271 (3) \AA; Gielen et al., 1987] and in $\left[\mathrm{Bu}_{3} \mathrm{Sn}\left(\mathrm{OH}_{2}\right)_{3}{ }^{+}[2 \cdot 326(5)\right.$ and $2 \cdot 295(4) \AA$; Davies, Goddard, Hursthouse \& Walker, 1986] but significantly shorter than in $\mathrm{Me}_{3} \mathrm{SnO}_{2} \mathrm{CCH}_{2} \mathrm{NMe}_{2} \cdot \mathrm{H}_{2} \mathrm{O}$ ($2.386 \AA$; Jurkschat, Tzschach, Zschunke, Grand \& Albrand, 1987).

Financial assistance by Deutsche Forschungsgemeinschaft is gratefully acknowledged.

References

Davies, A. G., Goddard, J. P., Hursthouse, M. B. \& Walker, N. P. C. (1986). J. Chem. Soc. Dalton Trans. pp. 1873-1877.

Frenz, B. A. (1985). Enraf-Nonius Structure Determination Package, SDP-Plus, V3.0. Enraf-Nonius, Delft, The Netherlands.
Gielen, M., Joosen, E., Mancilla, T., Jurkschat, K., Willem, R., Roobol, C., Bernheim, J., Atassi, G., Huber, F., hoffmann, E., Preut, H. \& Mahieu, B. (1987). Main Group Met. Chem. 10, 147-167.
International Tables for X-ray Crystallography (1974). Vol. IV, Tables 2.2B and 2.3.1. Birmingham: Kynoch Press. (Present distributor Kluwer Academic Publishers, Dordrecht.)
Jurkschat, K., Tzschach, A., Zschunke, A., Grand, A. \& Albrand, J. P. (1987). Ref. 21 in Gielen, M. et al., (1987).
Main, P., Fiske, S. J., Hull, S. E., Lessinger, L., Germain, G., Declerce, J.-P. \& Woolfson, M. M. (1980). MULTAN80. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Univs. of York, England, and Louvain, Belgium.
Nardelli, M. (1982). PARST. A System of Computer Routines for Calculating Molecular Parameters from Results of Crystal Structure Analysis. Univ. of Parma, Italy.
Sheldrick, G. M. (1987). SHELXTL-Plus (Release 2) for Nicolet R3m/V Crystallographic Systems for Solving, Refining, and Displaying Crystal Structures from Diffraction Data. Univ. of Göttingen, Federal Republic of Germany.

Structure of Bis(μ-pyridine-2-thione- μ-S)-bis[iodo(pyridine-2-thione-S)copper(I)]

By D. Mentzafos and A. Terzis*
X-ray Laboratory, NRC 'Democritos', Aghia Paraskevi 15310, Athens, Greece

and P. Karagiannidis* and P. Aslanidis
Department of General and Inorganic Chemistry, Aristotle University of Thessaloniki, Thessaloniki 54006, Greece
(Received 23 May 1988; accepted 25 August 1988)

Abstract

Cu}\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{NS}\right)_{2} \mathrm{I}\right]_{2}, M_{r}=825.55\), monoclinic, $C 2 / c, a=13.139$ (2), $b=9.888$ (1), $c=20.405$ (4) \AA, $\beta=94.92$ (1) ${ }^{\circ}, \quad V=2641.1$ (7) $\AA^{3}, \quad Z=4, \quad D_{m}=$ $2.065, D_{x}=2.076 \mathrm{Mg} \mathrm{m}^{-3}$, m.p. 323 K , $\lambda(\mathrm{Mo} K \alpha)$ $=0.71069 \AA, \mu=4.321 \mathrm{~mm}^{-1}, \quad F(000)=1583.9, T$ $=296(2) \mathrm{K}$. Final R value 0.0235 for 1767 observed reflections with $F_{o} \geq 3.0 \sigma\left(F_{o}\right)$. The structure consists of dimers, $\left[\mathrm{Cu}\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{NS}\right)_{2} \mathrm{I}\right]_{2}$, each having a twofold symmetry axis and a $\left(\mathrm{CuIS}_{2}\right)_{2}$ core in cis conformation stabilized by two strong intramolecular I $\cdots \mathrm{H}-\mathrm{N}$ hydrogen bonds. Each Cu atom has a distorted

[^1]0108-2701/89/010054-03\$03.00
tetrahedral coordination with one terminal and two bridging S atoms and a terminal I atom. The two tetrahedra are joined along the $S(2) \cdots S\left(2^{\prime}\right)$ edge. The $\mathrm{Cu} \cdots \mathrm{Cu}$ separation is $3.139 \AA$.

Introduction. Complexes of copper with pyridine-2thione (py2SH) have been known for some time and continue to be investigated (Raper, 1985). Recently the structures of copper halide complexes $\left[\mathrm{Cu}(\mathrm{py} 2 \mathrm{SH})_{3}\right]_{2} X_{2},(X=\mathrm{Cl}, \mathrm{Br})$, consisting of centrosymmetric dimers (Stergioudis, Kokkou, Rentzeperis \& Karagiannidis, 1987), have been reported. Since the stereochemistry of Cu^{I} with soft ligands is very flexible, it was deemed worthwhile to carry out also the X-ray

[^2]
[^0]: * Lists of H -atom coordinates, anisotropic thermal parameters and structure-factor amplitudes have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 51381 (22 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

[^1]: * To whom correspondence should be addressed.

[^2]: © 1989 International Union of Crystallography

